 © duniabioteknologi™ 2011  Dunia Bioteknologi: Information

Information

Tab "Information" ini akan memberi penerangan yang lebih mendalam serta maklumat tambahan tentang kategori-kategori dalam bioteknologi, institusi-institusi pengajian tinggi di Malaysia yang menawarkan program bioteknologi untuk peringkat diploma, ijazah sarjana muda, Master dan PhD, serta peluang pekerjaan yang anda perolehi sekiranya menceburi bidang bioteknologi.

i. Kategori-Kategori Bioteknologi

Kategori-kategori bioteknologi adalah seperti yang disenaraikan dalam tab "Introduction".  Di bahagian ini, ia akan memberikan penerangan yang lebih terperinci mengenainya dan ianya adalah lebih mudah fahami sekiranya ditulis dalam bahasa Inggeris. Kategori-kategori berikut ialah:

Molecular Biotechnology (Bioteknologi Molekul)
In its broadest sense, molecular biotechnology is the use of laboratory techniques to study and modify nucleic acids and proteins for applications in areas such as human and animal health, agriculture, and the environment.  Molecular biotechnology results from the convergence of many areas of research, such as molecular biology, microbiology, biochemistry, immunology, genetics, and cell biology.  It is an exciting field fueled by the ability to transfer genetic information between organisms with the goal of understanding important biological processes or creating a useful product.  The completion of the human genome project has opened a myriad of opportunities to create new medicines and treatments, as well as approaches to improve existing medicines.   Molecular biotechnology is a rapidly changing and dynamic field.  As the pace of advances accelerates, its influence will increase.  The importance and impact of molecular biotechnology is being felt across the nation.
Picture: Student working on research in the lab
Source: http://www.mb.kumc.edu/whatis.html

Next, the tools of molecular biotechnology can be applied to develop and improve drugs, vaccines, therapies, and diagnostic tests that will improve human and animal health.  Molecular biotechnology has applications in plant and animal agriculture, aquaculture, chemical and textile manufacturing, forestry, and food processing.  Every aspect of our lives in the coming decades will be affected by this dynamic field.

Molecular Biotechnology provides excellent employment opportunities.  Biomedicine and biotechnology have been identified by Presidential and Congressional commissions as leading growth sectors of the American and world economies in the 21st century.  It has been predicted that the biotechnology sector will add over 100,000 new jobs in the coming years.  The U.S. Department of Labor states that significant workforce supply and demand gaps already exist across the country, and that this shortage extends across all levels of education.  As the impact of molecular biotechnology on our lives expands, the need for individuals with the knowledge and experience base for technical and leadership positions in various bioscience/biotechnology-oriented settings will continue to grow.

Source:
http://www.mb.kumc.edu/whatis.html


Plant Biotechnology (Bioteknologi Tumbuhan)
This multidisciplinary course encompasses plant physiology, plant biochemistry and plant molecular biology. It brings together the expertise of plant scientists in the Botany and Biochemistry departments and aims to produce graduates with a knowledge of the structure and function of the whole plant and the ability to apply modern molecular and biochemical techniques to the manipulation of plants of agronomic importance.

For centuries, humankind has made improvements to crop plants through selective breeding and hybridization -- the controlled pollination of plants. Plant biotechnology is an extension of this traditional plant breeding with one very important difference -- plant biotechnology allows for the transfer of a greater variety of genetic information in a more precise, controlled manner.

Unlike traditional plant breeding, which involves the crossing of hundreds or thousands of genes, plant biotechnology allows for the transfer of only one or a few desirable genes. This more precise science allows plant breeders to develop crops with specific beneficial traits and without undesirable traits.

Picture: Some Plant Biotechnology Products
Source: http://www.fbae.org/2009/FBAE/website/images/btcotton_rice.jpg

Many of these beneficial traits in new plant varieties fight plant pests -- insects, disease and weeds -- that can be devastating to crops. Others provide quality improvements, such as tastier fruits and vegetables; processing advantages, such as tomatoes with higher solids content; and nutrition enhancements, such as oil seeds that produce oils with lower saturated fat content.

Crop improvements like these can help provide an abundant, healthful food supply and protect our environment for future generations. Please read 'Kepentingan Bioteknologi Tumbuhan Kepada Manusia' (http://duniabioteknologi.blogspot.com/2011/06/agro-biotech-kepentingan-bioteknologi.html) for more informations on the advantages of plant biotechnology to human.

**Notes: Agriculture = Plant + Animal Bioteknology

Source:
http://www.monsanto.co.uk/primer/faq.html
http://www.otago.ac.nz/courses/subjects/plbi.html


Animal Biotechnology (Bioteknologi Haiwan)
Animal biotechnology is the application of scientific and engineering principles to the processing or production of materials by animals or aquatic species to provide goods and services (NRC 2003). Examples of animal biotechnology are transgenics of animals or fish, using gene knockout technology to generate animals in which a specific gene has been inactivated, production of nearly identical animals by somatic cell nuclear transfer (also referred to as clones), and production of infertile aquatic species.

Transgenics
Since the early 1980s, methods have been developed and refined to generate transgenic animals or transgenic aquatic species. For example, transgenic livestock and transgenic aquatic species have been generated with increased growth rates, enhanced lean muscle mass, enhanced resistance to disease or improved use of dietary phosphorous to lessen the environmental impacts of animal manure. Transgenic poultry, swine, goats, and cattle also have been produced that generate large quantities of human proteins in eggs, milk, blood, or urine, with the goal of using these products as human pharmaceuticals. Examples of human pharmaceutical proteins include enzymes, clotting factors, albumin, and antibodies.

Picture: Left - Transgenic mice with fat genes
Source: http://cache.gawkerassets.com/assets/images/8/2010/03/fatmouse.jpg

Gene Knockout Technology
Animal biotechnology also can knock out or inactivate a specific gene. Knockout technology creates a possible source of replacement organs for humans. The process of transplanting cells, tissues, or organs from one species to another is referred to as “xenotransplantation.”

Somatic Cell Nuclear Transfer
Another application of animal biotechnology is the use of somatic cell nuclear transfer to produce multiple copies of animals that are nearly identical copies of other animals (transgenic animals, genetically superior animals, or animals that produce high quantities of milk or have some other desirable trait, etc.). This process has been referred to as cloning. To date, somatic cell nuclear transfer has been used to clone cattle, sheep, pigs, goats, horses, mules, cats, rats, and mice. The technique involves culturing somatic cells from an appropriate tissue (fibroblasts) from the animal to be cloned. Nuclei from the cultured somatic cells are then microinjected into an enucleated oocyte obtained from another individual of the same or a closely related species. 



Production of Infertile Aquatic Species
In aquaculture production systems, some species are not indigenous to a given area and can pose an ecological risk to native species should the foreign species escape confinement and enter the natural ecosystem. Generation of large populations of sterile fish or mollusks is one potential solution to this problem. Techniques have been developed to alter the chromosome complement to render individual fish and mollusks infertile.

Others
Advances in animal biotechnology have been facilitated by recent progress in sequencing and analyzing animal genomes, identification of molecular markers (microsatellites, expressed sequence tags [ESTs], quantitative trait loci [QTLs], etc.) and a better understanding of the mechanisms that regulate gene expression.

As with any new technology, animal biotechnology faces a variety of uncertainties, safety issues and potential risks. For example, concerns have been raised regarding: the use of unnecessary genes in constructs used to generate transgenic animals, the use of vectors with the potential to be transferred or to otherwise contribute sequences to other organisms, the potential effects of genetically modified animals on the environment, the effects of the biotechnology on the welfare of the animal, and potential human health and food safety concerns for meat or animal products derived from animal biotechnology.

Source:
http://www.csrees.usda.gov/nea/biotech/in_focus/biotechnology_if_animal.html
http://www.gate2biotech.com/animal-biotechnology/


Medical Biotechnology (Bioteknologi Perubatan)
In medicine, modern biotechnology finds promising applications in such areas as drug production, pharmacogenomics, gene therapy and genetic testing (or green screening, techniques use to detect genetic diseases). Some of the things genome knowledge and modern biotechnology make technically possible for human health and disability:

In testing:

    •    New tests to confirm a diagnosis of a disease or disability.
This means being able to accurately tell if the person has a particular condition or not.

    •    New tests to predict a disease or disability.
This means being able to tell if the person has a condition that will lead to the development of certain symptoms. The most well known form of predictive testing is newborn screening, and this is applied to all new babies for a limited range of conditions for which there is some treatment option.

    •    New tests for susceptibility to a disease or disability.
This means being able to tell if a person has the genetic makeup that means a particular condition is possible or even likely to develop, but in most cases, without any certainty that it will develop, or if it does, how mild or severe it will be.

    •    New test for carrier status for inherited conditions.
This means being able to tell if the parents or other relatives are carriers of the genetic characteristics that might lead to their children inheriting a particular disease or disability.

    •    New methods for prenatal testing of a foetus.
This means being able to tell if the foetus that is developing in a pregnant woman, is affected by a particular disease or disability.

    •    New technology and tests for pre-implantation genetic diagnosis.
This means using tests in conjunction with in-vitro fertilisation techniques, to determine if a fertilised embryo is affected by a particular disease or disability, prior to the implantation of an embryo into the woman so she will become pregnant.

Picture: DNA Microarray chip – Some can do as many as a million blood tests at once
Source: http://www.mun.ca/biology/scarr/VDA_schematic_Carr_et_al_2007c.jpg

In treatment:

    •    Enzyme replacement therapy.
This means producing an enzyme that is administered to the person as a medicine, and which takes over the function of a similar enzyme that the person's own cells are unable to produce in the right quantity, as a result of a genetic fault.

    •    Gene therapy.
This means using genes as medicine, for a person whose own genes have a fault in them. It involves introducing a new gene into the person to compensate for the incorrect expression of their own gene, and may also involve other action to stimulate an inactive gene, or restrict an overactive one.

    •    Stem cell therapy.
This means using stem cells, which are special cells that have properties that enable them to grow into a variety of different tissue types, and using them to replace or supplement particular tissue in a person with a genetic condition or health problem.

    •    Xeno-transplantation of cells from animals to humans.
This means taking tissue from other animal species and transplanting it into a person, to replace or supplement particular tissue that is affected by a genetic condition. This could also be used for other purposes such as heart valve replacements or skin grafts.

    •    Cloning of cells to assist with diagnosis or to improve the effectiveness of other treatments.
This means taking cells and using laboratory techniques to grow more of them to give a good sample to study for diagnosis. Cloning also includes combining part of one cell with part of another cell, to alter the characteristics of the cell that results from this combination.

    •    Targeted drug therapies.
This means using the precise knowledge of the function of a gene, and the protein or enzyme it produces, to produce a drug that is intended to act only on that particular enzyme or protein, and produce a correction to its absence, deficiency, or excess.

Also, you can visit here for more informations.

Source:
http://www.nzord.org.nz/research/modern_biotechnology/medical_uses_of_biotechnology


Natural and Industrial Biotechnology (Bioteknologi Alam Sekitar dan Industri)
Industrial biotechnology is the application of biotechnology for industrial purposes, including manufacturing, alternative energy (or "bioenergy"), and biomaterials. It includes the practice of using cells or components of cells like enzymes to generate industrially useful products. The Economist speculated (as cited in the Economist article listed in the "References" section) industrial biotechnology might significantly impact the chemical industry. The Economist also suggested it can enable economies to become less dependent on fossil fuels.

The industrial biotechnology community generally accepts an informal divide between industrial and pharmaceutical biotechnology. An example would be that of companies growing fungus to produce antibiotics, e.g. penicillin from the penicillium fungi. One view holds that this is industrial production; the other viewpoint is that it would not strictly lie within the domain of pure industrial production, given its inclusion within medical biotechnology.

Picture: An industrial biotechnology plant for the production of modified wheat starch and gluten
Source: http://en.wikipedia.org/wiki/File:Industrialbiotechnologyplant.jpg

This may be better understood by calling to mind the classification by the U.S. biotechnology lobby group, Biotechnology Industry Organization (BIO) of three "waves" of biotechnology. The first wave, Green Biotechnology, refers to agricultural biotechnology. The second wave, Red Biotechnology, refers to pharmaceutical and medical biotechnology. The third wave, White Biotechnology, refers to industrial biotechnology. In actuality, each of the waves may overlap each of the others. Industrial biotechnology, particularly the development of large-scale bioenergy refineries, will likely involve dedicated genetically modified crops as well as the large-scale bioprocessing and fermentation as is used in some pharmaceutical production.

Source: http://en.wikipedia.org/wiki/Industrial_biotechnology


Biopharmaceuticals (Biofarmasi)
Biopharmaceuticals are medical drugs produced using biotechnology. They are proteins, including antibodies, nucleic acids used for therapeutic or in vivo diagnostic purposes, and are produced by means other than direct extraction from a native (non-engineered) biological source.

The first such substance approved for therapeutic use was biosynthetic 'human' insulin made via recombinant DNA technology. The large majority of biopharmaceutical products are pharmaceuticals that are derived from life forms. Small molecule drugs are not typically regarded as biopharmaceutical in nature by the industry. However members of the press and the business and financial community often extend the definition to include pharmaceuticals not created through biotechnology. That is, the term has become an oft-used buzzword for a variety of different companies producing new, apparently high-tech pharmaceutical products. Research and development investment in new medicines by the biopharmaceutical industry stood at $65.2bn in 2008.

Picture: Research for drug discovery
Source: http://www.shoyaku.ac.jp/en/about/faculty/images/index_02.jpg

When a biopharmaceutical is developed, the company will typically apply for a patent, which is a grant for exclusive manufacturing rights. This is the primary means by which the developer of the drug can recover the investment cost for development of the biopharmaceutical. The patent laws in the United States and Europe differ somewhat on the requirements for a patent, with the European requirements are perceived as more difficult to satisfy. The total number of patents granted for biopharmaceuticals has risen significantly since the 1970s. In 1978 the total patents granted was 30. This had climbed to 15,600 in 1995, and by 2001 there were 34,527 patent applications.

The manufacture of the drug must satisfy the "current Good Manufacturing Practices" regulations of the FDA. They are typically manufactured in a clean room environment with set standards for the amount of airborne particles.

Source:
http://en.wikipedia.org/wiki/Biopharmaceutical


Food Biotechnology (Bioteknologi Makanan)
Biotechnology has a long history of use in food production and processing. For ten thousand years fermentation, a form of biotechnology, has been used to produce wine, beer and bread. Selective breeding of animals such as horses and dogs has been going on for centuries. Selective breeding of essential foods such as rice, corn and wheat have created thousands of local varieties with improved yield compared to their wild ancestors.

Wheat that is best for bread is different from wheat that is best for pasta. This was accomplished through conventional breeding over many years using traditional methods. However, such methods were often unpredictable and inefficient, resulting in undesirable traits passed along with desirable ones.

Picture: Bread made from wheat
http://ccr.ucdavis.edu/biot/what/index_new.shtml

Today, through newer biotechnology and genetic engineering, scientists use techniques such as recombinant DNA (rDNA). Scientists, by using rDNA, can move one gene, the inherited instruction for specific traits, from one organism to another and omit the undesirable traits. This enables food producers to obtain animal and crop improvements in a much more precise, controlled and predictable manner.

The potential benefits of biotechnology are enormous. Food producers can use new biotechnology to produce new products with desirable characteristics. These include characteristics such as disease and drought-resistant plants, leaner meat and enhanced flavor and nutritional quality of foods. This technology has also been used to develop life-saving vaccines, insulin, cancer treatment and other pharmaceuticals to improve quality of life.

In the past, plant breeders were limited to introducing traits within the same botanical family, such as wheat to wheat. Only pollen from a compatible parent wheat could be used to fertilize the seed-producing plant. The diversity of traits possible from this combination was limited by these genetic compatibility barriers. Today, gene transfer is not confined within cross-breeding species but can cross genetic barriers such as corn to tomato. A gene for a single trait can be identified and transferred from many sources.

Current applications of rDNA have been used to change a trait in its native plant system. For example a tomato to tomato transfer can control softening and ripening of the fruit. Another application is the transfer of modified forms of plant virus genes to plants to create a plant with complete resistance to that virus. It is easy to see how the use of rDNA enables much wider application of nature's diversity.

Picture: Genetically Modified Tomato
Source: http://ccr.ucdavis.edu/biot/what/index_new.shtml

Source:
http://www.foodinsight.org/Resources/Detail.aspx?topic=Background_on_Food_Biotechnology
http://ccr.ucdavis.edu/biot/what/index_new.shtml


Besides that, biotechnology can also be classified into some other main sub-field of bios technology, which are:

Red Biotechnology (Bioteknologi Merah)

This is the field of biotechnology applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures to cure diseases through genomic manipulation. 


 Picture: Medical Biotechnology is for human benefits
Source: http://www.unisi.it/eventi/biotecnologie/img/batteri.jpg


White Biotechnology (Bioteknologi Putih)
Also known as grey biotechnology is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. White biotechnology tends to consume less in resources than traditional processes when used to produce industrial goods.

Picture: Industrial Biotechnology is the solution to pollution
Source: http://www.biotechnologie.de/


Green Biotechnology (Bioteknology Hijau)
This field is applied to agricultural processes. An example is the designing of transgenic plants to grow under specific environmental conditions or in the presence (or absence) of certain agricultural chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture like the engineering of a plant to express a pesticide, thereby eliminating the need for external application of pesticides. An example is the Bt corn. There is considerable debate over the environment friendly nature of such crops.

Picture: Green Biotechnology is the study of plant and animal (agriculture) for our benefits
Source: http://img.ehowcdn.com/


Bioinformatics (Bioinformatik)

This is an interdisciplinary field which could be rightly termed as the most happening field of biotechnology. The field which is also often referred to as computational biology, addresses biological problems using computational techniques. It plays a key role in various areas like functional genomics, structural genomics, and proteomics amongst others, and forms a key component in biotechnology and pharmaceutical sector.

Picture: Bioinformatics also part of biotechnology
Source: http://onjava.com/onjava/2003/09/24/graphics/webmol.gif

Bioinformatics make use of techniques from applied mathematics, informatics, statistics, and computer science to solve biological problems. A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from noisy data produced by high-throughput biological techniques such as genomics (The field of data mining overlaps with computational biology in this regard). A representative problem in bioinformatics is the assembly of high-quality DNA sequences from fragmentary "shotgun" DNA sequencing, while in computational biology a representative problem might be statistical testing of a hypothesis of common gene regulation using data from mRNA microarrays or mass spectrometry. 



Blue Biotechnology (Bioteknologi Biru)

The term blue biotechnology has been used to describe the marine and aquatic applications of biotechnology, but its use is relatively rare.

Picture: Blue Biotechnology is the new findings from biotechnology world
Source: http://ec.europa.eu/research/research-for-europe/images/projects/bluebionet.jpg


Source:
http://www.123biotech.com/biotechnology%20categories.shtml




ii. Biotech Courses @ Malaysia
 
Biotech Courses

Di Malaysia, terdapat banyak universiti awam dan swasta yang menawarkan program dalam jurusan Bioteknologi. Secara amnya, pelajar-pelajar yang memohon jurusan tersebut perlu mempunyai kelulusan dalam subjek Biologi sama ada dalam peperiksaan SPM, Pra-U, STPM atau lain-lain. Selain itu, bagi pelajar-pelajar yang bercadang untuk melakukan kursus dalam Bioteknologi, mereka yang mendapat gred yang baik dalam mata pelajaran sains seperti Kimia dan Fizik juga akan menjadi keutamaan untuk dipilih.


Academic courses

Institut pengajian tinggi yang menawarkan program Diploma dalam Bioteknologi:

IPTA
IPTS

Kuala Lumpur Infrastructure University College (KLIUC)
Nilai University College
Technology Park Malaysia College
Geomatika College of Technology
International University College of Technology Twintech
Universiti Selangor (UNISEL)

Institut pengajian tinggi yang menawarkan program Ijazah Sarjana Muda dalam Bioteknologi:
IPTA
IPTS
Universiti Malaya (UM)
Malaysia University of Science and Technology (MUST)
Universiti Kebangsaan Malaysia (UKM)
Asian Institute of Medicine, Science & Technology (AIMST)
Universiti Sains Malaysia (USM)
Technology Park Malaysia College
Universiti Putra Malaysia (UPM)
Monash University Malaysia (MUM)
Universiti Sains Islam Malaysia (USIM)
Nottingham University Malaysia
Universiti Sarawak Malaysia (UNIMAS)
UCSI University
Universiti Sabah Malaysia (UMS)
Universiti Tunku Abdul Rahman (UTAR)
International Islamic University Malaysia (IIUM)
Universiti Industri Selangor (UNISEL)
Universiti Malaysia Pahang (UMP)
Taylor's University
Universiti Malaysia Terengganu (UMT)
Nilai University College
Universiti Sultan Zainal Abidin
INTI University College

Swinburne University of Technology, Sarawak Campus
HELP University College
International University College of Technology Twintech
International Medical University Malaysia (IMU)

Institut pengajian tinggi yang menawarkan program Master dalam Bioteknologi:
IPTA
IPTS
Universiti Malaya (UM)
Malaysia University of Science and Technology (MUST)
Universiti Kebangsaan Malaysia (UKM)
Asian Institute of Medicine, Science & Technology (AIMST)
Universiti Sains Malaysia (USM)
Monash University Malaysia (MUM)
Universiti Putra Malaysia (UPM)
Nottingham University Malaysia
Universiti Sains Islam Malaysia (USIM)
Universiti Tunku Abdul Rahman (UTAR)
Universiti Sarawak Malaysia (UNIMAS)
UCSI University
Universiti Sabah Malaysia (UMS)
Universiti Industri Selangor (UNISEL)
International Islamic University Malaysia (IIUM)
Taylor's University
Universiti Malaysia Pahang (UMP)
INTI University College
Universiti Malaysia Terengganu (UMT)
International University College of Technology Twintech
Universiti Sultan Zainal Abidin


Institut pengajian tinggi yang menawarkan program PhD dalam Bioteknologi:
IPTA
IPTS
Universiti Malaya (UM)
Malaysia University of Science and Technology (MUST)
Universiti Kebangsaan Malaysia (UKM)
Asian Institute of Medicine, Science & Technology (AIMST)
Universiti Sains Malaysia (USM)
Monash University Malaysia (MUM)
Universiti Putra Malaysia (UPM)
Nottingham University Malaysia
Universiti Sains Islam Malaysia (USIM)
Universiti Tunku Abdul Rahman (UTAR)
Universiti Sarawak Malaysia (UNIMAS)
Universiti Industri Selangor (UNISEL)
Universiti Sabah Malaysia (UMS)
Taylor's University
International Islamic University Malaysia (IIUM)
International University College of Technology Twintech
Universiti Malaysia Pahang (UMP)

Universiti Sultan Zainal Abidin

Sumber:
http://www.bic.org.my/?action=career&do=courses



iii. Peluang Pekerjaan

Terdapat pelbagai kerjaya yang berbeza dalam bidang atau sektor bioteknologi atau yang berkaitan dengannya, sama ada dari bidang penyelidikan dan pembangunan (P&P) kepada pembuatan dan pengeluaran; sistem maklumat; hal ehwal penyeliaan dan pentadbiran. Gambar rajah di bawah menunjukkan bahagian-bahagian yang berbeza dalam sebuah syarikat biotek yang masih di peringkat permulaan. Terdapat pelbagai peluang pekerjaan di setiap bahagian seperti yang dinyatakan dalam rajah di bawah dan semua bahagian memainkan peranan yang penting dalam syarikat tersebut. Sila scroll ke bawah untuk melihat penerangan tentang bidang tugas bagi setiap jawatan yang berkaitan dengan bidang bioteknologi iaitu di bahagian penyelidikan (Research), bahagian perkembangan produk (Product Development) dan bahagian kawalan pengesahan (Regulatory Approvals).

 
Diagram: Different divisions in a biotech start-up company  
Source: http://www.bic.org.my/?action=career&do=careerp


Bahagian Penyelidikan (Research)

Saintis Penyelidikan (Research Scientist)
Seorang Saintis Penyelidikan menjalankan kerja-kerja sains berasaskan projek, terutamanya dalam menghasilkan penemuan-penemuan baru dalam penyelidikan, atau membangunkan teknik saintifik yang lebih baik. Tugasnya termasuk menganalisa data, menginterpretasi hasil, menjalankan eksperimen saintifik, dan merekodkan hasil eksperimen. Selain itu, seorang Saintis Penyelidikan juga boleh memainkan peranan dalam menguruskan peralatan makmal dan perolehan bahan, serta bekerjasama dengan rakan sepasukan untuk membincangkan strategi penyelidikan. Beliau akan mengemukakan laporan mengenai penemuan penyelidikan, membuat ringkasan, menyemak semula protokol ujikaji serta menguruskan kerja-kerja penerbitan. Saintis Penyelidikan memerlukan sekurang-kurangnya ijazah asas (BSc) dan pengalaman bekerja dalam makmal.

Pembantu Penyelidik (Research Associate) 
Pembantu Penyelidik biasanya memimpin kumpulan projek atau ketua penguatkuasaan (chief implementators) yang mengetuai projek utama dalam sesebuah organisasi atau syarikat. Mereka menjalankan penyiasatan utama dalam eksperimen, menganalisa data, seterusnya menafsir keputusan dan membangunkan kaedah baru atau teknik dalam bidang kepakaran masing-masing. Mereka terlibat secara aktif dalam persidangan dan menyumbang secara meluas untuk jurnal saintifik. Mereka juga merangka dan melaksanakan protokol ujikaji dan strategi dalam pasukan penyelidikan. Manakala dalam pasukan, mereka memberikan panduan saintifik, latihan dan penyeliaan kepada ahli-ahli baru pasukan. Kelayakan yang diperlukan kebiasaannya ialah pasca kedoktoran (PhD) dalam sesuatu bidang kepakaran.

Pakar / Pembantu Makmal (Laboratort Specialist/Assistant)
Pakar Makmal atau Pembantu Makmal bekerja dalam persekitaran makmal, dan secara amnya mereka akan terlibat dalam projek-projek penyelidikan yang menjalankan eksperimen di bawah pengawasan ketua projek atau sebuah pasukan penyelidik. Mereka juga merupakan orang yang menghasil dan mengumpulkan data pada peringkat awal, membuat uji kaji dan pemerhatian yang mempunyai fungsi, dan juga menganalisa keputusan eksperimen. Pakar makmal juga mungkin bertanggungjawab dalam penyelenggaraan peralatan makmal, penyediaan bahan-bahan penyelidikan dan penyelenggaraan operasi makmal dari hari ke hari. Untuk menjadi Pakar Makmal / Pembantu Makmal, memerlukan kelayakan diploma teknikal atau ijazah sains asas.


Bahagian Perkembangan Produk (Product Development)

Pakar Produk (Product Specialist)
Pakar Produk mengendalikan akaun syarikat dengan pelanggan dan bertanggungjawab dalam jualan produk atau perkhidmatan syarikat. Mereka juga menjadi orang yang akan berhubung dengan bakal pelanggan, menguruskan borang perhubungan (liaisons) dengan pelanggan utama, dan membina hubungan baik dengan pelanggan. Pakar Produk memberikan maklumat mengenai produk, menunjukkan demonstrasi jadual, dan memberikan maklumat tentang harga produk. Mereka mungkin perlu menyediakan bantuan teknikal kepada pelanggan. Kebiasaannya, Pakar Produk akan mengendalikan wilayah tertentu, dan akan cuba untuk menambah bilangan akaunnya. Sekiranya seorang Pakar Produk telah memenuhi kuota jualan, dia akan dinaikkan pangkat untuk mengendalikan pengurusan untuk akaun negara atau serantau. Kelulusan yang diperlukan untuk menjadi seorang Pakar Produk pada peringkat awal ialah kelulusan sekolah menengah, diploma teknikal, atau ijazah asas (BSc), bergantung kepada skop tugas.

Pakar Alam Sekitar / Keselamatan (Environmental / Safety Specialist)
Pakar alam sekitar / Keselamatan bertanggungjawab dalam setiap program keselamatan industri di dalam syarikat. Mereka membangunkan, melaksanakan dan memantau penempatan program itu dalam syarikat itu. Selain itu, mereka juga bertanggungjawab memastikan syarikat mematuhi peraturan yang ditetapkan oleh pihak berkuasa. Antaranya ialah pemeriksaan pembinaan loji, peralatan penilaian, pemeriksaan bahan mentah, dan pemantauan tahap pendedahan pekerja kepada bahan toksik seperti radiasi. Seorang pakar keselamatan juga boleh menjalankan program latihan dalam sisa berbahaya, pelupusan, dan peraturan keselamatan radiasi, dan ianya bergantung kepada tahap kelayakannya. Jawatan ini memerlukan ijazah sarjana muda sains (Bsc) atau yang setara dengannya.


Bahagian Kawalan Pengesahan (Regulatory Approvals)

Agen Pempatenan (Patent Agent)
Tugas agen pempatenan lebih menjurus kepada bidang perundangan dan bidang tugasnya ialah mengawal dan mengesahkan setiap paten yang baru dihasilkan sebelum ia dibenarkan untuk dihasilkan dalam jumlah yang lebih banyak. Bidang tugas ini agak rumit  dan untuk keterangan yang lebih lanjut, anda boleh menghubungi Perbadanan Harta Intelek Malaysia. Ia adalah satu daripada bahagian Kementerian Perdagangan Dalam Negeri dan Hal Ehwal Pengguna Malaysia dan bertanggungjawab untuk pembangunan dan pengurusan sistem harta intelek di Malaysia. Berikut adalah pautan untuk maklumat lanjut: http://www.mipc.gov.my/index.php?option=com_content&task=view&id=10&Itemid=16.


Sumber:
http://www.lawyerment.com.my/boards/article-Malaysia_Intellectual_Property_Law-23.htm?Page=1
http://www.bic.org.my/?action=career&do=careerp
back to top